首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14814篇
  免费   1875篇
  国内免费   803篇
电工技术   103篇
技术理论   1篇
综合类   811篇
化学工业   7335篇
金属工艺   374篇
机械仪表   375篇
建筑科学   172篇
矿业工程   245篇
能源动力   167篇
轻工业   1982篇
水利工程   26篇
石油天然气   1491篇
武器工业   139篇
无线电   1077篇
一般工业技术   2263篇
冶金工业   183篇
原子能技术   177篇
自动化技术   571篇
  2024年   69篇
  2023年   377篇
  2022年   420篇
  2021年   855篇
  2020年   631篇
  2019年   607篇
  2018年   517篇
  2017年   507篇
  2016年   602篇
  2015年   585篇
  2014年   879篇
  2013年   1021篇
  2012年   1051篇
  2011年   1004篇
  2010年   707篇
  2009年   748篇
  2008年   616篇
  2007年   814篇
  2006年   800篇
  2005年   698篇
  2004年   578篇
  2003年   482篇
  2002年   402篇
  2001年   407篇
  2000年   319篇
  1999年   256篇
  1998年   227篇
  1997年   189篇
  1996年   197篇
  1995年   170篇
  1994年   124篇
  1993年   114篇
  1992年   95篇
  1991年   83篇
  1990年   64篇
  1989年   35篇
  1988年   31篇
  1987年   27篇
  1986年   22篇
  1985年   37篇
  1984年   34篇
  1983年   25篇
  1982年   34篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1976年   5篇
  1959年   1篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
11.
The synthesis of new Xenes and their potential applications prototypes have achieved significant milestones so far. However, to date the realization of Xene heterostructures in analogy with the well known van der Waals heterostructures remains an unresolved issue. Here, a Xene heterostructure concept based on the epitaxial combination of silicene and stanene on Ag(111) is introduced, and how one Xene layer enables another Xene layer of a different nature to grow on top is demonstrated. Single-phase (4 × 4) silicene is synthesized using stanene as a template, and stanene is grown on top of silicene on the other way around. In both heterostructures, in situ and ex situ probes confirm layer-by-layer growth without intercalations and intermixing. Modeling via density functional theory shows that the atomic layers in the heterostructures are strongly interacting, and hexagonal symmetry conservation in each individual layer is sequence selective. The results provide a substantial step toward currently missing Xene heterostructures and may inspire new paths for atomic-scale materials engineering.  相似文献   
12.
The phospholipid composition of lipoproteins is determined by the specificity of hepatic phospholipid biosynthesis. Plasma phospholipid 20:4n-6 and 22:6n-3 concentrations are higher in women than in men. We used this sex difference in a lipidomics analysis of the impact of endocrine factors on the phospholipid class and molecular species composition of fasting plasma from young men and women. Diester species predominated in all lipid classes measured. 20/54 Phosphatidylcholine (PtdCho) species were alkyl ester, 15/48 phosphatidylethanolamine (PtdEtn) species were alkyl ester, and 12/48 PtdEtn species were alkenyl ester. There were no significant differences between sexes in the proportions of alkyl PtdCho species. The proportion of alkyl ester PtdEtn species was greater in women than men, while the proportion of alkenyl ester PtdEtn species was greater in men than women. None of the phosphatidylinositol (PtdIns) or phosphatidylserine (PtdSer) molecular species contained ether-linked fatty acids. The proportion of PtdCho16:0_22:6, and the proportions of PtdEtn O-16:0_20:4 and PtdEtn O-18:2_20:4 were greater in women than men. There were no sex differences in PtdIns and PtdSer molecular species compositions. These findings show that plasma phospholipids can be modified by sex. Such differences in lipoprotein phospholipid composition could contribute to sexual dimorphism in patterns of health and disease.  相似文献   
13.
Low-dimensional carbon nanostructures are ideal nanofillers to reinforce the mechanical performance of polymer nanocomposites due to their excellent mechanical properties. Through molecular dynamics simulations, the mechanical performance of poly(vinyl alchohol) (PVA) nanocomposites reinforced with a single-layer diamond – diamane is investigated. It is found the PVA/diamane exhibits similar interfacial strengths and pull-out characteristics with the PVA/bilayer-graphene counterpart. Specifically, when the nanofiller is fully embedded in the nanocomposite, it is unable to deform simultaneously with the PVA matrix due to the weak interfacial load transfer efficiency, thus the enhancement effect is not significant. In comparison, diamane can effectively promote the tensile properties of the nanocomposite when it has a laminated structure as it deforms simultaneously with the matrix. With this configuration, the interlayer sp3 bonds endows diamane with a much higher resistance under compression and shear tests, thus the nanocomposite can reach very high compressive and shear stress. Overall, enhancement on the mechanical interlocking at the interface as triggered by surface functionalization is only effective for the fully embedded nanofiller. This work provides a fundamental understanding of the mechanical properties of PVA nanocomposites reinforced by diamane, which can shed lights on the design and preparation of next generation high-performance nanocomposites.  相似文献   
14.
To theoretically explore amorphous materials with a sufficiently low dielectric loss, which are essential for next-generation communication devices, the applicability of a nonequilibrium molecular dynamics simulation employing an external alternating electric field was examined using alkaline silicate glass models. In this method, the dielectric loss is directly evaluated as the phase shift of the dipole moment from the applied electric field. This method enabled us to evaluate the dielectric loss in a wide frequency range from 1 GHz to 10 THz. It was observed that the dielectric loss reaches its maximum at a few THz. The simulation method was found to qualitatively reproduce the effects of alkaline content and alkaline type on the dielectric loss. Furthermore, it reasonably reproduced the effect of mixed alkalines on the dielectric loss, which was observed in our experiments on sodium and/or potassium silicate glasses. Alkaline mixing was thus found to reduce the dielectric loss.  相似文献   
15.
Molecular dynamics simulations are performed to investigate the solid surface-induced microstructure and friction coefficient of glycerol aqueous solutions with different water contents confined in graphene and FeO nanoslits. Results show that the friction coefficient of glycerol aqueous solutions confined in both nanoslits presents similar nonlinear variation tendencies with increasing water content, but their lowest value and the corresponding water contents differ. Distinctive microstructures of the near-surface liquid layer induced by surfaces with different hydrophilicity are responsible for their difference in lubrication. The sliding primarily occurs at the solid–liquid interface for the hydrophobic graphene nanoslit owing to almost the same velocity difference in fluid molecules. By contrast, the sliding mainly occurs at the liquid–liquid interface for the hydrophilic FeO nanoslit because of the large velocity difference in fluid molecules. The weaker the interaction force at the sliding position, the lower the friction coefficient.  相似文献   
16.
海胆酮是一种酮式类胡萝卜素,主要从海胆及藻类等海洋生物中提取。本文研究海胆酮对乙酰胆碱酯酶(acetylcholinesterase,AChE)的抑制作用,应用酶动力学、荧光光谱、圆二色光谱和分子对接技术研究海胆酮对AChE的抑制机理,并用淀粉样β蛋白片段25~35(amyloid beta-peptide 25-35,Aβ25-35)诱导大鼠肾上腺嗜铬细胞瘤细胞(PC12细胞)建立阿尔茨海默症(Alzheimer’s disease,AD)模型,研究海胆酮对AD细胞模型氧化应激损伤的作用。结果表明,海胆酮有很强的AChE抑制活性,其半抑制质量浓度为(16.29±0.97)μg/mL,抑制常数Ki为3.82 μg/mL,表现为竞争性抑制;海胆酮可诱导AChE二级结构改变,更容易与AChE活性中心氨基酸Ser200、His440、Trp84和Tyr121结合,阻碍底物碘代硫代乙酰胆碱(acetylthiocholine iodide,ATCI)与酶结合,从而引起酶活力降低。海胆酮能有效抑制Aβ25-35诱导PC12细胞的AChE活力,降低丙二醛含量,增加超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶活力,减轻Aβ25-35诱导的PC12细胞氧化应激损伤。本研究基于AChE和氧化应激阐明了海胆酮对AD的潜在作用机制,为海胆酮在功能食品、生物医药等领域的应用提供了数据支持和理论根据。  相似文献   
17.
The present work was conducted to illustrate the mechanism of gel formation of myofibrillar proteins (MPs) under different microwave heating times. The results showed that the denaturation enthalpy (ΔH) of the MPs significantly decreased when the heating time increased from 3 to 9 s and then completely disappeared as the heating time progressed, indicating that the MPs gradually denatured and subsequently aggregated with increasing heating time, which was further verified by the changes in the secondary structure, electrophoretic bands, and gel properties (e.g., water holding capacity and textural profiles) of the MPs. Microstructural images indicated that the MP gel formed under 12 s had the most compact network, indicating that extended microwave heating time could induce quality deterioration of MP gels. Moreover, the hydrophobic forces, electrostatic forces, and disulphide bonds of the MPs gradually intensified with increasing microwave heating time, suggesting that both non-covalent and covalent bonds could promote molecular denaturation and subsequent aggregation of MPs. In addition, correlation analysis revealed that the changes in the molecular conformation of MPs induced by different microwave heating times could effectively regulate the formation of MP gels and their related properties.  相似文献   
18.
Spinels with the generic chemical formula AB2O4 have potential applications in nuclear energy and batteries. In both cases, their functionality is related to mass transport through the crystal. Here, using long-time atomistic simulations, we examine the impact of the cation structure on interstitial transport in two spinel chemistries, inverse MgGa2O4 and double MgAlGaO4. We emphasize two aspects of the transport properties: the unit mechanisms that are described by individual barriers, for which we introduce pole-figure-like plots, and the aggregate behavior of those unit mechanisms. Compared to previous work on normal spinels, we find that inversion significantly reduces the rate of interstitial transport in these structures and has an impact on the stability of defects as they move through the lattice. In particular, B cation interstitials are found to be kinetically stable only in the inverse MgGa2O4. These results provide new insight into relationship between structure, chemistry, and transport in spinels.  相似文献   
19.
20.
Hemorphins are known for their role in the control of blood pressure. Recently, we revealed the positive modulation of the angiotensin II (AngII) type 1 receptor (AT1R) by LVV-hemorphin-7 (LVV-H7) in human embryonic kidney (HEK293) cells. Here, we examined the molecular binding behavior of LVV-H7 on AT1R and its effect on AngII binding using a nanoluciferase-based bioluminescence resonance energy transfer (NanoBRET) assay in HEK293FT cells, as well as molecular docking and molecular dynamics (MD) studies. Saturation and real-time kinetics supported the positive effect of LVV-H7 on the binding of AngII. While the competitive antagonist olmesartan competed with AngII binding, LVV-H7 slightly, but significantly, decreased AngII’s kD by 2.6 fold with no effect on its Bmax. Molecular docking and MD simulations indicated that the binding of LVV-H7 in the intracellular region of AT1R allosterically potentiates AngII binding. LVV-H7 targets residues on intracellular loops 2 and 3 of AT1R, which are known binding sites of allosteric modulators in other GPCRs. Our data demonstrate the allosteric effect of LVV-H7 on AngII binding, which is consistent with the positive modulation of AT1R activity and signaling previously reported. This further supports the pharmacological targeting of AT1R by hemorphins, with implications in vascular and renal physiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号